Sains Malaysiana 53(2)(2024): 421-432
http://doi.org/10.17576/jsm-2024-5302-15
Kesan Penggantian Litium
ke atas Struktur, Sifat Fizikal dan Sifat Elektrik terhadap Seramik BCZT
(The Effect of Lithium Substitution on the
Structure, Physical, and Electrical Properties of BCZT Ceramic)
HAZIQAH FADHLINA1,
A. ATIQAH1,*, ZALITA ZAINUDDIN2,
NUR SHAKILA OTHMAN2, SOLEHAH ALI2 & NOR AMALINA2
1Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2School of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 30 July
2023/Accepted: 24 January 2024
Abstract
The invention of novel lead-free piezoelectric materials with ABO3 perovskite
structure, based on barium calcium zirconate titanate (BCZT) for application in
various device especially in sensor application. In this work, BCZT with
lithium substitution at the calcium site with composition Ba0.85Ca0.15-xLi2xZr0.1Ti0.9O3 (x = 0.00, 0.03, 0.06, 0.09 and 0.12) were synthesized by using the
conventional, solid state reaction method. The influence of different Li
content on the structure, microstructure, density, and electrical properties
were investigated. The results show that substitution led to the improvement of
the physical and electrical properties of the piezoelectric ceramic materials.
The physical properties show the largest grain size and the highest value of
density, ρ which is 4.158 g/cm3 for x = 0.06. This physical properties led to the highest value of
piezoelectric coefficient, d33, remnant polarisation, Pr and saturated polarization, Ps which are 304.6 pC/N, 3.27
µC/cm2, and 5.54 µC/cm2, respectively, while the highest
dielectric constant, ɛr was 3994 when x = 0.12.
Keywords: BCZT materials; ceramic materials; d33; lead-free piezoelectric
material; lithium substitution; piezoelectric coefficient
Abstrak
Inovasi bahan piezoelektrik bebas plumbum yang berstruktur perovskit ABO3,
berasaskan barium kalsium zirkonat titanat (BCZT) bagi mencipta peranti yang
dapat digunakan secara meluas terutamanya dalam aplikasi sensor. Dalam kajian
ini, BCZT dengan penggantian litium pada tapak kalsium dengan komposisi bahan Ba0.85Ca0.15-xLi2xZr0.1Ti0.9O3 (x = 0.00, 0.03, 0.06, 0.09 dan 0.12) telah disintesis menggunakan kaedah
konvensional, tindak balas keadaan pepejal. Kesan kandungan Li yang berbeza
terhadap struktur, mikrostruktur, ketumpatan dan sifat elektik telah dikaji.
Hasi kajian menunjukkan penggantian Li membawa kepada peningkatan sifat fizikal
dan elektrik bahan seramik piezoelektrik. Sifat fizikal bahan menunjukkan saiz
butiran yang paling besar dan nilai ketumpatan, ρ yang paling
tinggi iaitu 4.158 g/cm3 apabila x = 0.06. Sifat fizikal ini
menyumbang kepada nilai pemalar piezoelektrik, d33,
pengutuban baki, Pr dan pengutuban tepu, Ps yang
tertinggi dengan nilai masing-masing ialah 304.6 pC/N, 3.27µC/cm2 dan 5.54 µC/cm2 manakala bagi pemalar dielektrik, ɛr nilai paling tinggi diperoleh apabila x = 0.12 iaitu 3994.
Kata kunci: Bahan BCZT; bahan piezoelektrik bebas plumbum; bahan seramik; d33;
pemalar piezoelektrik; penggantian litium
REFERENCES
Awan, M.Q., Ahmad, J., Sun, Q., Hu,
W., Berlie, A. & Liu, Y. 2018. Structure, dielectric and ferroelectric
properties of lead-free (Ba,Ca)(Ti,Zr)O3-XBiErO3 piezoelectric ceramics. Ceramics International 44(6): 6872-6877.
https://doi.org/10.1016/j.ceramint.2018.01.112
Aziguli, H., Zhang, T. &
Yu, P. 2020. Effect of additive glycerol on piezoelectric properties of
modified sol-gel (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics. Materials Science Forum 993 MSF: 791-798.
https://doi.org/10.4028/www.scientific.net/MSF.993.791
Bajpai, P.K. & Tamrakar,
P. 2017. Structural and dielectric behavior of doped bismuth sodium titanate:
Lead free piezoelectric materials. AIP Conference Proceedings 1837(1):
040062. https://doi.org/10.1063/1.4982146
Bansal, P., Kumar, M., Syal,
R., Singh, A.K. & Kumar, S. 2021. Magnetoelectric coupling enhancement in
lead-free BCTZ–XNZFO composites. Journal of Materials Science:
Materials in Electronics 32(13): 17512-17523.
https://doi.org/10.1007/s10854-021-06284-9
Benyoussef, M., Zannen, M.,
Belhadi, J., Monoun, B., Dellis, J-L., El Marssi, M. & Lahmar, A. 2018. Dielectric,
ferroelectric, and energy storage properties in dysprosium doped sodium bismuth
titanate ceramics. Ceramics International 44(16): 19451-19460.
https://doi.org/10.1016/j.ceramint.2018.07.182
Chen, X., Ruan, X., Zhao, K.,
He, X., Zeng, J., Li, Y., Zheng, L., Hong, C. & Li, G. 2015. Low sintering
temperature and high piezoelectric properties of Li-doped (Ba, Ca)(Ti, Zr) O3 lead-free ceramics. Journal of Alloys and Compounds 632: 103-109.
https://doi.org/10.1016/j.jallcom.2015.01.088
Chen, X., Zeng, J., Kim, D.,
Zheng, L., Lou, Q., Hong, C. & Li, G. 2019. Understanding of role of Li in
high-performance Pb-free Li-doped (Ba0.85 Ca0.15)(Ti0.9 Zr0.1)O3 piezoceramics from theory and experiments. Materials
Chemistry and Physics https://doi.org/10.1016/j.matchemphys.2019.04.011
Cheng, Y., Xing, J., Wu, C.,
Wang, T., Xie, L., Liu, Y., Xu, X., Wang, K., Xiao, D. & Zhu, J. 2020.
Investigation of high piezoelectric properties of KNNSb-SrxBNZ ceramics. Journal
of Alloys and Compounds 815: 152252. https://doi.org/10.1016/j.jallcom.2019.152252
Deng, Y., Wang, J., Zhang, C.,
Bai, C., Liu, D., Wu, F. & Yang, B. 2020. Structural and electric
properties of MnO2 -Doped KNN-LT lead-free piezoelectric ceramics. Crystals 10(8): 705. https://doi.org/10.3390/cryst10080705
Fadhlina, H., Afdzaluddin, A.
& Zainuddin, Z. 2022. A review on lithium doped lead-free piezoelectric
materials. Materials Today Communications 33: 104835.
https://doi.org/10.1016/j.mtcomm.2022.104835
Gao, X., Dong, N., Xia, F.,
Guo, Q., Hao, H., Liu, H. & Zhang, S. 2020. Impact of phase structure on
piezoelectric properties of textured lead-free ceramics. Crystals 10(5):
367. https://doi.org/10.3390/cryst10050367
Gio, P.D. & Phong, N.D.
2015. Effects of LiF on the structure and electrical properties of (Na0.52K0.435Li0.045)Nb0.87Sb0.08Ta0.05O3 lead-free piezoelectric ceramics sintered at low temperatures. Journal of
Materials Science and Chemical Engineering 3(11): 13-20. http://dx.doi.org/10.4236/msce.2015.311003
Halim, N.A., Abd. Majid, W.H.
& Velayutham, T.S. 2019. Ferroelectric, pyroelectric and piezoelectric
properties of CeO2‑doped Na0.5Bi0.5TiO3 ceramics. SN Applied Sciences 1: 582.
https://doi.org/10.1007/s42452-019-0593-2
He, X., Han, F., Liu, M.,
Yuan, Z., Jiang, X., Hu, C., Ren, S., Lei, X. & Liu, L. 2020.
High-temperature dielectric and relaxation behavior of tantalum-doped sodium
bismuth titanate-barium titanate ceramics. Journal of Electronic Materials 49(11): 6643-6655. https://doi.org/10.1007/s11664-020-08441-y
Hwang, C-C., Chou, C-C., Wang,
J-L., Hsieh, T-Y. & Tseng, J-T. 2012. The lithium doping effect on (Na0.5K0.5)NbO3 lead-free piezo-ceramics structure structure stability and ferroelectric
characteristics. 217-219: 682-685.
https://doi.org/10.4028/www.scientific.net/AMM.217-219.682
Izzuddin, I., Jumali, M.H.H.,
Zalita, Z., Huwaida, J.N. & Awang, R. 2016. Influence of crystal structural
orientation on impedance and piezoelectric properties of KNN ceramic prepared
using sol-gel method. Sains Malaysiana 45(8): 1281-1287.
Jain Ruth, D.E., Venkidu, L.
& Sundarakannan, B. 2018. Structure-property relation to enhance the
piezoelectric free piezoelectric ceramics. Journal of Materials Science:
Materials in Electronics 29: 5433-5438.
https://doi.org/10.1007/s10854-017-8509-7
Jiang, M., Zhang, J., Rao, G.,
Li, D., Randall, C.A., Li, T., Peng, B., Li, L., Gu, Z., Liu, X. & Huang,
H. 2019. Ultrahigh piezoelectric coefficient of a lead-free K0.5Na0.5NbO3-based
single crystal fabricated by a simple seed-free solid-state growth method. Journal
of Materials Chemistry C 7: 14845-14854. https://doi.org/10.1039/c9tc05143k
Kaleva, G.M., Politova, E.D.,
Mosunov, A.V. & Stefanovich, S.Y. 2020. Phase formation, structure, and
dielectric properties of modified potassium sodium niobate ceramics. Inorganic
Materials 56(10): 1072-1078. https://doi.org/10.1134/S0020168520100076
Kim, J., Ji, J-H., Shin, D-J.
& Koh, J-H. 2018. Improved Li and Sb doped lead-free (Na,K)NbO3 piezoelectric ceramics for energy harvesting applications. Ceramics
International 44(18): 22219-22224.
https://doi.org/10.1016/j.ceramint.2018.08.341
Kornphom, C., Laowanidwatana,
A. & Bongkarn, T. 2017. Influence of sintering temperature on properties of
BNKLLT–wt% BCTZ binary lead-free piezoelectric ceramic prepared through the
solid-state combustion technique. Phase Transitions 90(3): 317-324.
https://doi.org/10.1080/01411594.2016.1192169
Kornphom, C., Udeye, T.,
Thongbai, P. & Bongkarn, T. 2017. Phase structures, PPT region and
electrical properties of new lead-free KNLNTS-BCTZ ceramics fabricated via the
solid-state combustion technique. Ceramics International 43(Supplement
1): S182-S192. https://doi.org/10.1016/j.ceramint.2017.05.180
Kumar, S., Kurchania, R. &
Kumar, A. 2019. Dielectric and impedance spectroscopic study of lithium doped
potassium tantalum niobium oxide. Ceramics International 45(14):
17137-17143. https://doi.org/10.1016/j.ceramint.2019.05.267
Li, P., Fu, Z., Wang, F.,
Huan, Y., Zhou, Z., Zhai, J., Shen, B. & Zhang, S. 2020. High
piezoelectricity and stable output in BaHfO3 and (Bi0.5 Na 0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta Materialia 199: 542-550.
https://doi.org/10.1016/j.actamat.2020.08.058
Ma, J., Wu, J., Wu, B. &
Wu, W. 2020. Advances in the modification of the contradictory relationship
between piezoelectricity and curie temperature: Simultaneous realization of
large piezoelectricity and high curie temperature in potassium sodium
niobate-based ferroelectrics. Journal of Materials Chemistry C 8(28):
9506-9510. https://doi.org/10.1039/d0tc01888k
Mawani, H.D., Shastri, N.M.,
Mangrola, M.H. & Joshi, V.G. 2020. Structural and electrical properties of
sodium bismuth titanate prepared by solid state reaction method. AIP
Conference Proceedings 2220(1): 140055. https://doi.org/10.1063/5.0002127
Mekonnen, M.A. & Tadesse,
M.Z. 2021. Low temperature sintering of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoceramic with the additive of MnO2. Journal of
Electroceramics 46: 115-123. https://doi.org/10.1007/s10832-021-00250-x
Ming, B-Q., Wang, J-F. &
Zang, G-Z. 2008. Effects of Li substitution and sintering temperature on
properties of Bi0.5(Na,K)0.5TiO3 lead-free
piezoelectric ceramics. Chinese Physics Letters 25(10): 3776-3778. http://dx.doi.org/10.1088/0256-307X/25/10/070
Mohammad Hafizuddin Haji
Jumali, Mohd Riduan Mohd, Ngoi Yung Wee, Muhammad Yahaya & Muhammad Mat
Salleh. 2010. Kelakuan pengesanan tekanan bagi seramik natrium bismut titanat. Sains
Malaysiana 39(4): 621-626.
Negi, N.S., Kumar, R., Sharma,
H., Shah, J. & Kotnala, R.K. 2018. Structural, multiferroic, dielectric and
magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 lead-free composites. Journal of Magnetism and Magnetic Materials 456:
292-299. https://doi.org/10.1016/j.jmmm.2017.12.095
Nor Huwaida Binti Janil @
Jamil, Mohammad Hafizuddin Bin Hj Jumali, Zalita Binti Zainuddin, Izura Binti
Izzuddin & Soodkhet Pojprapai. 2019. Penentuan parameter optimum bagi
rawatan pengutuban elektrik ke atas seramik-piezo (BaTiO3) menggunakan sistem
buatan sendiri. Sains Malaysiana 48(2): 425-433.
https://doi.org/10.17576/jsm-2019-4802-21
Orlik, K., Lorgouilloux, Y.,
Marchet, P., Thuault, A., Jean, F., Rguiti, M. & Courtois, C. 2020.
Influence of microwave sintering on electrical properties of BCTZ lead free
piezoelectric ceramics. Journal of the European Ceramic Society 40(4):
1212-1216. https://doi.org/10.1016/j.jeurceramsoc.2019.12.010
Perumal, R.N., Athikesavan, V.
& Nair, P. 2018. Influence of lead titanate additive on the structural and
electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceramics International 44(11): 13259-13266.
https://doi.org/10.1016/j.ceramint.2018.04.155
Politova, E.D., Strebkov,
D.A., Belkova, D.A., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V. &
Stefanovich, S.Y. 2020. Phase formation and relaxor properties of lead-free
perovskite ceramics on the base of sodium-bismuth titanate (Na0.5Bi0.5)(Ti,Mg)O3. Ferroelectrics 560(1): 48-53.
https://doi.org/10.1080/00150193.2020.1722882
Reshetnikova, E.A.,
Lisnevskaya, I.V. & Terekhin, A.I. 2020. Hydrothermal synthesis of sodium
bismuth titanate ferroelectrics. Inorganic Materials 56(1): 83-90.
https://doi.org/10.1134/S0020168520010136
Sarizal Md Ani, Andanastuti
Muchtar, Norhamidi Muhamad, & Jaharah A. Ghani. 2017. Kesan suhu
pensinteran terhadap sifat mekanik dan mikrostruktur alumina-zirkonia yang
difabrikasi dengan kaedah pengacuan suntikan seramik. Sains Malaysiana 46(10): 1979-1986. https://doi.org/10.17576/jsm-2017-4610-37
Sharma, S., Sharma, H.,
Thakur, S., Shah, J., Kotnala, R.K. & Negi, N.S. 2021a. Structural,
magnetic, magneto-dielectric and magneto-electric properties of (1-x) Ba0.85Ca0.15Ti0.90Zr0.10O3 – (x) CoFe2O4 lead-free multiferroic composites sintered at higher temperature. Journal of Magnetism and Magnetic Materials 538: 168243.
https://doi.org/10.1016/j.jmmm.2021.168243
Sharma, S., Thakur, S., Shah,
J., Kotnala, R.K. & Negi, N.S. 2021b. Influence of phase dominance on
structural, magneto-dielectric, magnetic-electric properties of (Ba0.85Ca0.15Zr0.1Ti0.9)O3-CoFe2O3 composites. Journal of Materials Science: Materials in Electronics 32(5):
6570-6585. https://doi.org/10.1007/s10854-021-05373-z
Shi, S., Hashimoto, H. &
Sekino, T. 2021. Enhancing piezoelectric properties of Ba0.88Ca0.12Zr0.12Ti0.88O3 lead-free ceramics by doping Co ions. Ceramics International 47(3):
3272-3278. https://doi.org/10.1016/j.ceramint.2020.09.167
Sun, Y., Yang, H., Guan, S.,
Cao, Y., Jiang, M. & Liu, X. 2019. Strong piezoelectricity of Li2CO3-Doped
BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free piezoelectric ceramics with high curie temperature and high
temperature stability. Journal of Alloys and Compounds 2019: 153058.
https://doi.org/10.1016/j.jallcom.2019.153058
Tan, C.K.I., Yao, K. & Ma,
J. 2013. Effects of LiF on the structure and properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free piezoelectric ceramics. International Journal of Applied Ceramic
Technology 10(4): 701-706. https://doi.org/10.1111/j.1744-7402.2012.02771.x
Tian, Y., Wang, Q., Zhang, B.,
Qin, P., Gong, Y., Ji, X. & Jing, Q. 2020. Temperature-dependent
ferroelectric and piezoelectric response of Yb3+ and Tm3+ co-doped Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics. Research Square https://doi.org/10.21203/rs.3.rs-53948/v2
Ul, R., Marchet, P., Pham-Thi,
M. & Tran-Hue-Huu, L-P. 2019. Improved properties of doped BaTiO3 piezoelectric ceramics. Physica Status Solidi 2019: 1900413.
https://doi.org/10.1002/pssa.201900413
Verma, A., Yadav, A.K.,
Khatun, N., Kumar, S., Jangir, R., Srihari, V., Raghavendra Reddy, V., Liu,
S.W., Biring, S. & Sen, S. 2018. Structural, dielectric and ferroelectric
studies of thermally stable and efficient energy storage ceramic material (Na0.5-xKxBi0.5-XLax)TiO3. Ceramics International 44(16): 20178-20186. https://doi.org/10.1016/j.ceramint.2018.07.312
Wang, C., Li, Q., Zhang, W.,
Yan, B., Yadav, A.K., Peng, H. & Fan, H. 2020. [Bi0.5(Na0.4-XLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free relaxor ceramics with the enhanced recoverable energy density. Ceramics
International 46(1): 715-721. https://doi.org/10.1016/j.ceramint.2019.09.024
Wang, Q., Lin, J., Zhou, Y.,
Lin, C., Lin, T. & Wu, X. 2020. Sm-induced multifunctionality and poling
effect on luminescence of Sm-doped (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoceramics. Functional Materials Letters 13(5): 2051023. https://doi.org/10.1142/S1793604720510236
Wang, X., Yue, J. & Liu,
J. 2021. Enhanced temperature stability and electrical properties of Bi/Mn
Co-doped (Ba,Ca) (Zr,Ti)O3 lead-free ceramics. Ceramics
International 47(2): 2525-2530. https://doi.org/10.1016/j.ceramint.2020.09.096
Wongsaenmai, S., Ananta, S.
& Yimnirun, R. 2012. Effect of Li addition on phase formation behavior and
electrical properties of (K0.5Na0.5)NbO3 lead
free ceramics. Ceramics International 38(1): 147-152.
https://doi.org/10.1016/j.ceramint.2011.06.049
Wu, Y., Ma, F., Qu, J., Luo,
Y., Lv, C., Guo, Q. & Qi, T. 2019. Vertically-aligned lead-free BCTZY
nanofibers with enhanced electrical properties for flexible piezoelectric
nanogenerators. Applied Surface Science 469: 283-291.
https://doi.org/10.1016/j.apsusc.2018.10.229
Wu, Y., Ma, F., Qu, J., Luo,
Y., Song, J., Wei, G., Zhang, Y. & Qi, T. 2018. Role of Cu and Y in
sintering, phase transition, and electrical properties of BCZT lead-free piezoceramics. Ceramics International 44(13): 15001-15009.
https://doi.org/10.1016/j.ceramint.2018.05.129
Xu, J., Lu, Q., Lin, J., Lin,
C., Zheng, X., Lin, T. & Wu, X. 2020. Enhanced ferro-/piezoelectric
properties of tape-casting-derived Er3+-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 optoelectronic thick films. Journal of Advanced Ceramics 9(6): 693-702. https://doi.org/10.1007/s40145-020-0405-6
Xu, J., Zhou, Y., Li, Z., Lin,
C., Zheng, X., Lin, T., Wu, X. & Wang, F. 2021. Microstructural,
ferroelectric and photoluminescence properties of Er3+-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 thin films. Materials Chemistry and Physics 262: 124320.
https://doi.org/10.1016/j.matchemphys.2021.124320
Yan, X., Zheng, M., Zhu, M.
& Hou, Y. 2019. Enhanced electrical resistivity and mechanical properties
in BCTZ-based composite ceramic. Journal of Advanced Dielectrics 9(5):
1950036. https://doi.org/10.1142/S2010135X1950036X
Zhai, Y., Du, J., Chen, C.,
Li, W. & Hao, J. 2020. The photoluminescence and piezoelectric properties
of Eu2O3 doped KNN-based ceramics. Journal of Alloys
and Compounds 829: 154518. https://doi.org/10.1016/j.jallcom.2020.154518
Zhang, Y., Sun, H.J. &
Chen, W. 2016. Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3lead-free
ceramics with highly improved piezoelectricity. Journal of Alloys and Compounds 694: 745-751. https://doi.org/10.1016/j.jallcom.2016.10.061
Zhao, R., Li, Y., Zheng, Z.
& Kang, W. 2020. Phase structure regulation and enhanced piezoelectric
properties of Li-doped KNN-based ceramics. Materials Chemistry and Physics 245: 122806. https://doi.org/10.1016/j.matchemphys.2020.122806
*Corresponding
author; email: a.atiqah@ukm.edu.my
|